Package: BayesLN 0.2.10
BayesLN: Bayesian Inference for Log-Normal Data
Bayesian inference under log-normality assumption must be performed very carefully. In fact, under the common priors for the variance, useful quantities in the original data scale (like mean and quantiles) do not have posterior moments that are finite (Fabrizi et al. 2012 <doi:10.1214/12-BA733>). This package allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distribution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate several kind of means (unconditional, conditional and conditional under a mixed model) and quantiles (unconditional and conditional) are provided.
Authors:
BayesLN_0.2.10.tar.gz
BayesLN_0.2.10.zip(r-4.5)BayesLN_0.2.10.zip(r-4.4)BayesLN_0.2.10.zip(r-4.3)
BayesLN_0.2.10.tgz(r-4.4-x86_64)BayesLN_0.2.10.tgz(r-4.4-arm64)BayesLN_0.2.10.tgz(r-4.3-x86_64)BayesLN_0.2.10.tgz(r-4.3-arm64)
BayesLN_0.2.10.tar.gz(r-4.5-noble)BayesLN_0.2.10.tar.gz(r-4.4-noble)
BayesLN_0.2.10.tgz(r-4.4-emscripten)BayesLN_0.2.10.tgz(r-4.3-emscripten)
BayesLN.pdf |BayesLN.html✨
BayesLN/json (API)
# Install 'BayesLN' in R: |
install.packages('BayesLN', repos = c('https://agardini.r-universe.dev', 'https://cloud.r-project.org')) |
- EPA09 - Chrysene concentration data
- NCBC - Naval Construction Battalion Center data
- ReadingTime - Reading Times data
- fatigue - Low cycle fatigue data
- laminators - Laminators
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 11 months agofrom:a62fd4d59c. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 24 2024 |
R-4.5-win-x86_64 | NOTE | Oct 24 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 24 2024 |
R-4.4-win-x86_64 | OK | Oct 24 2024 |
R-4.4-mac-x86_64 | OK | Oct 24 2024 |
R-4.4-mac-aarch64 | OK | Oct 24 2024 |
R-4.3-win-x86_64 | OK | Oct 24 2024 |
R-4.3-mac-x86_64 | OK | Oct 24 2024 |
R-4.3-mac-aarch64 | OK | Oct 24 2024 |
Exports:dlSMNGdSMNGGH_MGFLN_hier_existenceLN_hierarchicalLN_MeanLN_MeanRegLN_QuantLN_QuantRegmeanSMNGplSMNGpSMNGqlSMNGqSMNGrlSMNGrSMNGSMNG_MGFSMNGmoment
Dependencies:bootcodadata.tableDistributionUtilsGeneralizedHyperbolicgsllatticelme4MASSMatrixminqanlmenloptrnumDerivoptimxpracmaRcppRcppEigen
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Chrysene concentration data | EPA09 |
Low cycle fatigue data | fatigue |
GH Moment Generating Function | GH_MGF |
Laminators | laminators |
Numerical evaluation of the log-normal conditioned means posterior moments | LN_hier_existence |
Bayesian estimation of a log - normal hierarchical model | LN_hierarchical |
Bayesian Estimate of the Log-normal Mean | LN_Mean |
Bayesian Estimate of the conditional Log-normal Mean | LN_MeanReg |
Bayesian estimate of the log-normal quantiles | LN_Quant |
Bayesian estimate of the log-normal conditioned quantiles | LN_QuantReg |
Naval Construction Battalion Center data | NCBC |
Reading Times data | ReadingTime |
SMNG and logSMNG Distributions | dlSMNG dSMNG plSMNG pSMNG qlSMNG qSMNG rlSMNG rSMNG SMNGdistribution |
SMNG Moments and Moment Generating Function | meanSMNG SMNGmoment SMNGmoments SMNG_MGF |