Package: BayesLN 0.2.10

BayesLN: Bayesian Inference for Log-Normal Data

Bayesian inference under log-normality assumption must be performed very carefully. In fact, under the common priors for the variance, useful quantities in the original data scale (like mean and quantiles) do not have posterior moments that are finite (Fabrizi et al. 2012 <doi:10.1214/12-BA733>). This package allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distribution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate several kind of means (unconditional, conditional and conditional under a mixed model) and quantiles (unconditional and conditional) are provided.

Authors:Aldo Gardini [aut, cre], Enrico Fabrizi [aut], Carlo Trivisano [aut]

BayesLN_0.2.10.tar.gz
BayesLN_0.2.10.zip(r-4.5)BayesLN_0.2.10.zip(r-4.4)BayesLN_0.2.10.zip(r-4.3)
BayesLN_0.2.10.tgz(r-4.4-x86_64)BayesLN_0.2.10.tgz(r-4.4-arm64)BayesLN_0.2.10.tgz(r-4.3-x86_64)BayesLN_0.2.10.tgz(r-4.3-arm64)
BayesLN_0.2.10.tar.gz(r-4.5-noble)BayesLN_0.2.10.tar.gz(r-4.4-noble)
BayesLN_0.2.10.tgz(r-4.4-emscripten)BayesLN_0.2.10.tgz(r-4.3-emscripten)
BayesLN.pdf |BayesLN.html
BayesLN/json (API)

# Install 'BayesLN' in R:
install.packages('BayesLN', repos = c('https://agardini.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

2.20 score 16 scripts 414 downloads 1 mentions 18 exports 21 dependencies

Last updated 1 years agofrom:a62fd4d59c. Checks:7 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 22 2025
R-4.5-win-x86_64NOTEJan 22 2025
R-4.5-linux-x86_64NOTEJan 22 2025
R-4.4-win-x86_64OKJan 22 2025
R-4.4-mac-x86_64OKJan 22 2025
R-4.4-mac-aarch64OKJan 22 2025
R-4.3-win-x86_64OKJan 22 2025
R-4.3-mac-x86_64OKJan 22 2025
R-4.3-mac-aarch64OKJan 22 2025

Exports:dlSMNGdSMNGGH_MGFLN_hier_existenceLN_hierarchicalLN_MeanLN_MeanRegLN_QuantLN_QuantRegmeanSMNGplSMNGpSMNGqlSMNGqSMNGrlSMNGrSMNGSMNG_MGFSMNGmoment

Dependencies:bootcodadata.tableDistributionUtilsGeneralizedHyperbolicgsllatticelme4MASSMatrixminqanlmenloptrnumDerivoptimxpracmarbibutilsRcppRcppEigenRdpackreformulas

Bayesian Inference with Log-normal Data

Rendered fromBayesLogNormal.Rmdusingknitr::rmarkdownon Jan 22 2025.

Last update: 2021-03-31
Started: 2020-02-20