Package: BayesLN 0.2.10

BayesLN: Bayesian Inference for Log-Normal Data

Bayesian inference under log-normality assumption must be performed very carefully. In fact, under the common priors for the variance, useful quantities in the original data scale (like mean and quantiles) do not have posterior moments that are finite (Fabrizi et al. 2012 <doi:10.1214/12-BA733>). This package allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distribution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate several kind of means (unconditional, conditional and conditional under a mixed model) and quantiles (unconditional and conditional) are provided.

Authors:Aldo Gardini [aut, cre], Enrico Fabrizi [aut], Carlo Trivisano [aut]

BayesLN_0.2.10.tar.gz
BayesLN_0.2.10.zip(r-4.5)BayesLN_0.2.10.zip(r-4.4)BayesLN_0.2.10.zip(r-4.3)
BayesLN_0.2.10.tgz(r-4.4-x86_64)BayesLN_0.2.10.tgz(r-4.4-arm64)BayesLN_0.2.10.tgz(r-4.3-x86_64)BayesLN_0.2.10.tgz(r-4.3-arm64)
BayesLN_0.2.10.tar.gz(r-4.5-noble)BayesLN_0.2.10.tar.gz(r-4.4-noble)
BayesLN_0.2.10.tgz(r-4.4-emscripten)BayesLN_0.2.10.tgz(r-4.3-emscripten)
BayesLN.pdf |BayesLN.html
BayesLN/json (API)

# Install 'BayesLN' in R:
install.packages('BayesLN', repos = c('https://agardini.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.20 score 16 scripts 407 downloads 1 mentions 18 exports 18 dependencies

Last updated 11 months agofrom:a62fd4d59c. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 24 2024
R-4.5-win-x86_64NOTEOct 24 2024
R-4.5-linux-x86_64NOTEOct 24 2024
R-4.4-win-x86_64OKOct 24 2024
R-4.4-mac-x86_64OKOct 24 2024
R-4.4-mac-aarch64OKOct 24 2024
R-4.3-win-x86_64OKOct 24 2024
R-4.3-mac-x86_64OKOct 24 2024
R-4.3-mac-aarch64OKOct 24 2024

Exports:dlSMNGdSMNGGH_MGFLN_hier_existenceLN_hierarchicalLN_MeanLN_MeanRegLN_QuantLN_QuantRegmeanSMNGplSMNGpSMNGqlSMNGqSMNGrlSMNGrSMNGSMNG_MGFSMNGmoment

Dependencies:bootcodadata.tableDistributionUtilsGeneralizedHyperbolicgsllatticelme4MASSMatrixminqanlmenloptrnumDerivoptimxpracmaRcppRcppEigen

Bayesian Inference with Log-normal Data

Rendered fromBayesLogNormal.Rmdusingknitr::rmarkdownon Oct 24 2024.

Last update: 2021-03-31
Started: 2020-02-20